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Contaminated
Electrolyte

Ion Exchange

• An ion exchange process has been proposed as a method of removing fission
products from the electrolyte salt. †

† D. Lexa and I. Johnson, Metallurgical and Materials Transactions B, 32B, 429-435, (2001).
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Concept of Advanced Pyrochemical Process

• The Korea Atomic Energy Research Institute (KAERI) proposed a zone freezing
method as a potential alternative to the ion exchange process. †

† Y. Z. Cho, G. H. Park, H. S. Lee, I. T. Kim, D. S. Han, Nuclear Technology, 171, 325-334 (2010).
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Concept of Advanced Pyrochemical Process

• Ion exchange and zone freezing were not directly compared in this work; however,
results may help researchers determine the optimal process configuration.
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Ion Exchange Zone Freezing
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What is Zone Freezing?
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• Salt is completely liquid in the high temperature zone at typical electrorefiner exit
compositions.

Background



What is Zone Freezing?
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• At some intermediate time, pure LiCl-KCl salt has solidified at the top surface,
leaving a CsCl enriched liquid phase.

Background



What is Zone Freezing?
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• The ternary eutectic point has been reached and the bottom portion of the salt with
the bulk of the CsCl finally solidifies.

Background



Motivation & Goals

• Results from Cho et al.† have proven that there are many
parameters to be explored.

• To better understand the zone freezing process the
following conditions were explored:

 Temperature,

 Advancement and cooling rate,

 Composition and amount of the salt, and

 Crucible lid and no-lid configurations.

• In addition, a modeling tool was developed to help
describe zone freezing results.

• Success will help in optimizing zone freezing.

† Y. Z. Cho,, G. H. Park, H. S. Lee, I. T. Kim, D. S. Han, Nuclear Technology, 171, 325-334, (2010).
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Experimental Methods
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Cross-Sectional View

Crystal Growing Furnace



Variables & Conditions
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Experimental Methods

1 wt% CsCl 3 wt% CsCl 5 wt% CsCl

Advancement
rate (mm/hr)

50 g, No-Lid,
ΔT = 200 °C

50 g, No-Lid,
ΔT = 200 °C

400 g, No-Lid,
ΔT = 200 °C

50 g, No-Lid,
ΔT = 300 °C

50 g, Lid,
ΔT = 200 °C

50 g, No-Lid,
ΔT = 200 °C

1.8 X X X X

3.2 X X X X

5.0 X X X X X X

• Initial compositions of salt.
• Amount of salt mixture.
• Temperatures of high and low furnace zones.
• Advancement rates.
• Lid Configurations.
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Grown Salt Crystals
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Experimental Results
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Temperature Profiles & Analysis
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Experimental Results
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Growth Time: The amount of time passed from the onset to the termination of solidification.
Used to determine the effective growth rate in the salt.

ΔT:  The temperature difference between the top and bottom of the liquid phase.  
Used to calculate the Gr number and salt physical properties (ρ, ν, and D).



Concentration Profiles & Analysis
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Experimental Results



1.6 g/hr

1.8 g/hr

2.1 g/hr

1.3 g/hr2.3 g/hr3.6 g/hr

1.5 g/hr

1.7 g/hr2.8 g/hr

0%

10%

20%

30%

40%

50%

60%

70%

80%

5 10 15 20 25

P
er

ce
n

ta
g

e
R

ec
y

cl
ed

Time (hr)

50 g, No-Lid Configuration

50 g, Lid Configuration

50 g, ΔT = 300°C

17

Percentage of Recycled Salt (2 wt % CsCl Purity, 50 g batches)

Experimental Results

• The 400 g experiments showed increased recycle percentages and high throughputs.
• Assumed that all experimental conditions will have increased performance for larger mix

sizes.
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Waste Composition (2 wt% CsCl Recycled Purity, 50 g batches)

Experimental Results
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• Recommend multiple stages to further reduce waste.



1 wt%, 3 wt%, and 5 wt% CsCl
Experiments

Experimental Results
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Multiple Stages?

• ↑ initial compositions → diminishing returns. 

• Recommended Conditions:

 5.0 mm/hr rate with a lid configuration with 4 stages.

 Total recycle percentage of 86% and recycle throughput of 2.75 g/hr
(waste = 0.44 g/hr at 9 wt% CsCl).

Experimental Results
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• Model Assumptions:

 Segregation coefficient (keff) is constant.

 No concentration gradient in the liquid (well-mixed).

 Equilibrium prevails at the interface.
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Scheil Model

Model Development

E. Scheil, Zeitchrift fur Metallkunde, 23, 237, (1931) and W. G. Pfann, Journals of Metals, 4, 747 (1952).

1k
S0effS

eff)f1(CkC 

  LSSSL dC)f1(dfCC  1.Eqn

2.Eqn

Governing Eqn.:

Solution:

where,

CS = Solid Conc., CL = Liquid Conc.,

C0 = Initial Conc., keff= CS/CB, and

fS = Fraction Solidified

fl

CL

CS

1

2

kC0

10 fs

dfs
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• Model Assumptions:
 Segregation coefficient (k) is constant.
 A concentration boundary layer (δ) exists with no mixing.
 Equilibrium prevails at the interface.
 Neglects end effects.
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Tiller Model

Model Development

W. A. Tiller, K. A. Jackson, J. W. Rutter, B. Chalmers, Acta Metallurgica, 1, 428-437 (1953).
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Governing Eqn.:

Solution:

where,

C = Concentration, k = CS/CL,

R = growth rate, and D = Diffusion
Coefficient.
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Modeling Results

Comparison Between Models
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• Use a simple weighted average method between the two
models to get:

• k and keff are the same for parameters used in their
respective equations.

• Simulates a system transitioning from a diffusion
dominant to convection dominant regime.
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Hybrid Model
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Hybrid Model

Modeling Results
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• Optimal operating parameters are:

 400 g mixture,

 5.0 mm/hr,

 ΔT = 200ºC,

 Lid Configuration.

• Multiple stages can be used to decrease waste volume.

• The Scheil model fits best the 400 g and ΔT = 300ºC cases.

• The hybrid model fits best the 50 g, lid and no-lid
configurations, but can be used for all cases.
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Conclusions
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